aboutsummaryrefslogtreecommitdiffstats
path: root/src/js/OpenLayers.Projection.OrdnanceSurvey.js
blob: bb596d3bf746d0bb718456e82c61457bd722a43b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/**
 * OpenLayers OSGB Grid Projection Transformations
 *
 * Conversion to OpenLayers by Thomas Wood (grand.edgemaster@gmail.com)
 *
 * this program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 * 
 * this program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 * 
 * --------------------------------------------------------------------------- 
 *
 * PLEASE DO NOT HOTLINK THIS, save this onto your own server
 *  - I cannot guarantee this file will remain here forever.
 *
 * ---------------------------------------------------------------------------
 * 
 * Credits:
 * Based from the geotools js library by Paul Dixon
 * GeoTools javascript coordinate transformations
 * http://files.dixo.net/geotools.html
 *
 * Portions of this file copyright (c)2005 Paul Dixon (paul@elphin.com)
 *
 * The algorithm used by the script for WGS84-OSGB36 conversions is derived 
 * from an OSGB spreadsheet (www.gps.gov.uk) with permission. This has been
 * adapted into Perl by Ian Harris, and into PHP by Barry Hunter. Conversion
 * accuracy is in the order of 7m for 90% of Great Britain, and should be 
 * be similar to the conversion made by a typical GPSr
 *
 */
 
OpenLayers.Projection.OS = {

    /**
     * Method: projectForwardBritish
     * Given an object with x and y properties in EPSG:4326, modify the x,y
     * properties on the object to be the OSGB36 (transverse mercator)
     * projected coordinates.
     *
     * Parameters:
     * point - {Object} An object with x and y properties. 
     * 
     * Returns:
     * {Object} The point, with the x and y properties transformed to spherical
     * mercator.
     */
    projectForwardBritish: function(point) {
        var x1 = OpenLayers.Projection.OS.Lat_Long_H_to_X(point.y,point.x,0,6378137.00,6356752.313);
        var y1 = OpenLayers.Projection.OS.Lat_Long_H_to_Y(point.y,point.x,0,6378137.00,6356752.313);
        var z1 = OpenLayers.Projection.OS.Lat_H_to_Z     (point.y,        0,6378137.00,6356752.313);

        var x2 = OpenLayers.Projection.OS.Helmert_X(x1,y1,z1,-446.448,-0.2470,-0.8421,20.4894);
        var y2 = OpenLayers.Projection.OS.Helmert_Y(x1,y1,z1, 125.157,-0.1502,-0.8421,20.4894);
        var z2 = OpenLayers.Projection.OS.Helmert_Z(x1,y1,z1,-542.060,-0.1502,-0.2470,20.4894);

        var lat2 = OpenLayers.Projection.OS.XYZ_to_Lat (x2,y2,z2,6377563.396,6356256.910);
        var lon2 = OpenLayers.Projection.OS.XYZ_to_Long(x2,y2);

        point.x = OpenLayers.Projection.OS.Lat_Long_to_East (lat2,lon2,6377563.396,6356256.910,400000,0.999601272,49.00000,-2.00000);
        point.y = OpenLayers.Projection.OS.Lat_Long_to_North(lat2,lon2,6377563.396,6356256.910,400000,-100000,0.999601272,49.00000,-2.00000);

        return point;
    },
    
    /**
     * Method: projectInverseBritish
     * Given an object with x and y properties in OSGB36 (transverse mercator),
     * modify the x,y properties on the object to be the unprojected coordinates.
     *
     * Parameters:
     * point - {Object} An object with x and y properties. 
     * 
     * Returns:
     * {Object} The point, with the x and y properties transformed from
     * OSGB36 to unprojected coordinates..
     */
    projectInverseBritish: function(point) {
        var lat1 = OpenLayers.Projection.OS.E_N_to_Lat (point.x,point.y,6377563.396,6356256.910,400000,-100000,0.999601272,49.00000,-2.00000);
        var lon1 = OpenLayers.Projection.OS.E_N_to_Long(point.x,point.y,6377563.396,6356256.910,400000,-100000,0.999601272,49.00000,-2.00000);

        var x1 = OpenLayers.Projection.OS.Lat_Long_H_to_X(lat1,lon1,0,6377563.396,6356256.910);
        var y1 = OpenLayers.Projection.OS.Lat_Long_H_to_Y(lat1,lon1,0,6377563.396,6356256.910);
        var z1 = OpenLayers.Projection.OS.Lat_H_to_Z     (lat1,     0,6377563.396,6356256.910);

        var x2 = OpenLayers.Projection.OS.Helmert_X(x1,y1,z1,446.448 ,0.2470,0.8421,-20.4894);
        var y2 = OpenLayers.Projection.OS.Helmert_Y(x1,y1,z1,-125.157,0.1502,0.8421,-20.4894);
        var z2 = OpenLayers.Projection.OS.Helmert_Z(x1,y1,z1,542.060 ,0.1502,0.2470,-20.4894);

        var lat = OpenLayers.Projection.OS.XYZ_to_Lat(x2,y2,z2,6378137.000,6356752.313);
        var lon = OpenLayers.Projection.OS.XYZ_to_Long(x2,y2);        
        
        point.x = lon;
        point.y = lat;
        return point;
    },
  
    goog2osgb: function(point) {
        return OpenLayers.Projection.OS.projectForwardBritish(OpenLayers.Layer.SphericalMercator.projectInverse(point));
    },
  
    osgb2goog: function(point) {
        return OpenLayers.Layer.SphericalMercator.projectForward(OpenLayers.Projection.OS.projectInverseBritish(point));
    },
    
    /*****
     * Mathematical functions
     *****/
    E_N_to_Lat: function(East, North, a, b, e0, n0, f0, PHI0, LAM0) {
      //Un-project Transverse Mercator eastings and northings back to latitude.
      //eastings (East) and northings (North) in meters; _
      //ellipsoid axis dimensions (a & b) in meters; _
      //eastings (e0) and northings (n0) of false origin in meters; _
      //central meridian scale factor (f0) and _
      //latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees.

      //Convert angle measures to radians
        var Pi = 3.14159265358979;
        var RadPHI0 = PHI0 * (Pi / 180);
        var RadLAM0 = LAM0 * (Pi / 180);

      //Compute af0, bf0, e squared (e2), n and Et
        var af0 = a * f0;
        var bf0 = b * f0;
        var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2);
        var n = (af0 - bf0) / (af0 + bf0);
        var Et = East - e0;

      //Compute initial value for latitude (PHI) in radians
        var PHId = OpenLayers.Projection.OS.InitialLat(North, n0, af0, RadPHI0, n, bf0);
        
      //Compute nu, rho and eta2 using value for PHId
        var nu = af0 / (Math.sqrt(1 - (e2 * ( Math.pow(Math.sin(PHId),2)))));
        var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(PHId),2)));
        var eta2 = (nu / rho) - 1;
        
      //Compute Latitude
        var VII = (Math.tan(PHId)) / (2 * rho * nu);
        var VIII = ((Math.tan(PHId)) / (24 * rho * Math.pow(nu,3))) * (5 + (3 * (Math.pow(Math.tan(PHId),2))) + eta2 - (9 * eta2 * (Math.pow(Math.tan(PHId),2))));
        var IX = ((Math.tan(PHId)) / (720 * rho * Math.pow(nu,5))) * (61 + (90 * ((Math.tan(PHId)) ^ 2)) + (45 * (Math.pow(Math.tan(PHId),4))));
        
        var E_N_to_Lat = (180 / Pi) * (PHId - (Math.pow(Et,2) * VII) + (Math.pow(Et,4) * VIII) - ((Et ^ 6) * IX));
  
        return (E_N_to_Lat);
    },

    E_N_to_Long: function(East, North, a, b, e0, n0, f0, PHI0, LAM0) {
      //Un-project Transverse Mercator eastings and northings back to longitude.
      //eastings (East) and northings (North) in meters; _
      //ellipsoid axis dimensions (a & b) in meters; _
      //eastings (e0) and northings (n0) of false origin in meters; _
      //central meridian scale factor (f0) and _
      //latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees.

      //Convert angle measures to radians
        var Pi = 3.14159265358979;
        var RadPHI0 = PHI0 * (Pi / 180);
        var RadLAM0 = LAM0 * (Pi / 180);

      //Compute af0, bf0, e squared (e2), n and Et
        var af0 = a * f0;
        var bf0 = b * f0;
        var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2);
        var n = (af0 - bf0) / (af0 + bf0);
        var Et = East - e0;

      //Compute initial value for latitude (PHI) in radians
        var PHId = OpenLayers.Projection.OS.InitialLat(North, n0, af0, RadPHI0, n, bf0);
        
      //Compute nu, rho and eta2 using value for PHId
         var nu = af0 / (Math.sqrt(1 - (e2 * (Math.pow(Math.sin(PHId),2)))));
        var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(PHId),2)));
        var eta2 = (nu / rho) - 1;

      //Compute Longitude
        var X = (Math.pow(Math.cos(PHId),-1)) / nu;
        var XI = ((Math.pow(Math.cos(PHId),-1)) / (6 * Math.pow(nu,3))) * ((nu / rho) + (2 * (Math.pow(Math.tan(PHId),2))));
        var XII = ((Math.pow(Math.cos(PHId),-1)) / (120 * Math.pow(nu,5))) * (5 + (28 * (Math.pow(Math.tan(PHId),2))) + (24 * (Math.pow(Math.tan(PHId),4))));
        var XIIA = ((Math.pow(Math.cos(PHId),-1)) / (5040 * Math.pow(nu,7))) * (61 + (662 * (Math.pow(Math.tan(PHId),2))) + (1320 * (Math.pow(Math.tan(PHId),4))) + (720 * (Math.pow(Math.tan(PHId),6))));

        var E_N_to_Long = (180 / Pi) * (RadLAM0 + (Et * X) - (Math.pow(Et,3) * XI) + (Math.pow(Et,5) * XII) - (Math.pow(Et,7) * XIIA));
  
      return E_N_to_Long;
    },

    InitialLat: function(North, n0, afo, PHI0, n, bfo) {
      //Compute initial value for Latitude (PHI) IN RADIANS.
      //northing of point (North) and northing of false origin (n0) in meters; _
      //semi major axis multiplied by central meridian scale factor (af0) in meters; _
      //latitude of false origin (PHI0) IN RADIANS; _
      //n (computed from a, b and f0) and _
      //ellipsoid semi major axis multiplied by central meridian scale factor (bf0) in meters.

      //First PHI value (PHI1)
         var PHI1 = ((North - n0) / afo) + PHI0;
        
      //Calculate M
        var M = OpenLayers.Projection.OS.Marc(bfo, n, PHI0, PHI1);
        
      //Calculate new PHI value (PHI2)
        var PHI2 = ((North - n0 - M) / afo) + PHI1;
        
      //Iterate to get final value for InitialLat
      while (Math.abs(North - n0 - M) > 0.00001) 
      {
            PHI2 = ((North - n0 - M) / afo) + PHI1;
            M = OpenLayers.Projection.OS.Marc(bfo, n, PHI0, PHI2);
            PHI1 = PHI2;
      }    
        return PHI2;
    },

    Lat_Long_H_to_X: function(PHI, LAM, H, a, b) {
      // Convert geodetic coords lat (PHI), long (LAM) and height (H) to cartesian X coordinate.
      // Input: - _
      //    Latitude (PHI)& Longitude (LAM) both in decimal degrees; _
      //  Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters.

      // Convert angle measures to radians
        var Pi = 3.14159265358979;
        var RadPHI = PHI * (Pi / 180);
        var RadLAM = LAM * (Pi / 180);

      // Compute eccentricity squared and nu
        var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2);
        var V = a / (Math.sqrt(1 - (e2 * (  Math.pow(Math.sin(RadPHI),2)))));

      // Compute X
        return (V + H) * (Math.cos(RadPHI)) * (Math.cos(RadLAM));
    },


    Lat_Long_H_to_Y: function(PHI, LAM, H, a, b) {
      // Convert geodetic coords lat (PHI), long (LAM) and height (H) to cartesian Y coordinate.
      // Input: - _
      // Latitude (PHI)& Longitude (LAM) both in decimal degrees; _
      // Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters.

      // Convert angle measures to radians
        var Pi = 3.14159265358979;
        var RadPHI = PHI * (Pi / 180);
        var RadLAM = LAM * (Pi / 180);

      // Compute eccentricity squared and nu
        var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2);
        var V = a / (Math.sqrt(1 - (e2 * (  Math.pow(Math.sin(RadPHI),2))) ));

      // Compute Y
        return (V + H) * (Math.cos(RadPHI)) * (Math.sin(RadLAM));
    },


    Lat_H_to_Z: function(PHI, H, a, b) {
      // Convert geodetic coord components latitude (PHI) and height (H) to cartesian Z coordinate.
      // Input: - _
      //    Latitude (PHI) decimal degrees; _
      // Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters.

      // Convert angle measures to radians
        var Pi = 3.14159265358979;
        var RadPHI = PHI * (Pi / 180);

      // Compute eccentricity squared and nu
        var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2);
        var V = a / (Math.sqrt(1 - (e2 * (  Math.pow(Math.sin(RadPHI),2)) )));

      // Compute X
        return ((V * (1 - e2)) + H) * (Math.sin(RadPHI));
    },


    Helmert_X: function(X,Y,Z,DX,Y_Rot,Z_Rot,s)  {

      // (X, Y, Z, DX, Y_Rot, Z_Rot, s)
      // Computed Helmert transformed X coordinate.
      // Input: - _
      //    cartesian XYZ coords (X,Y,Z), X translation (DX) all in meters ; _
      // Y and Z rotations in seconds of arc (Y_Rot, Z_Rot) and scale in ppm (s).

      // Convert rotations to radians and ppm scale to a factor
      var Pi = 3.14159265358979;
      var sfactor = s * 0.000001;

      var RadY_Rot = (Y_Rot / 3600) * (Pi / 180);

      var RadZ_Rot = (Z_Rot / 3600) * (Pi / 180);

      //Compute transformed X coord
        return  (X + (X * sfactor) - (Y * RadZ_Rot) + (Z * RadY_Rot) + DX);
    },


    Helmert_Y: function(X,Y,Z,DY,X_Rot,Z_Rot,s) {
      // Computed Helmert transformed Y coordinate.
      // Input: - _
      //    cartesian XYZ coords (X,Y,Z), Y translation (DY) all in meters ; _
      //  X and Z rotations in seconds of arc (X_Rot, Z_Rot) and scale in ppm (s).

      // Convert rotations to radians and ppm scale to a factor
      var Pi = 3.14159265358979;
      var sfactor = s * 0.000001;
      var RadX_Rot = (X_Rot / 3600) * (Pi / 180);
      var RadZ_Rot = (Z_Rot / 3600) * (Pi / 180);

      // Compute transformed Y coord
      return (X * RadZ_Rot) + Y + (Y * sfactor) - (Z * RadX_Rot) + DY;
    },



    Helmert_Z: function(X, Y, Z, DZ, X_Rot, Y_Rot, s) {
      // Computed Helmert transformed Z coordinate.
      // Input: - _
      //    cartesian XYZ coords (X,Y,Z), Z translation (DZ) all in meters ; _
      // X and Y rotations in seconds of arc (X_Rot, Y_Rot) and scale in ppm (s).
      // 
      // Convert rotations to radians and ppm scale to a factor
      var Pi = 3.14159265358979;
      var sfactor = s * 0.000001;
      var RadX_Rot = (X_Rot / 3600) * (Pi / 180);
      var RadY_Rot = (Y_Rot / 3600) * (Pi / 180);

      // Compute transformed Z coord
      return (-1 * X * RadY_Rot) + (Y * RadX_Rot) + Z + (Z * sfactor) + DZ;
    } ,

    XYZ_to_Lat: function(X, Y, Z, a, b)  {
      // Convert XYZ to Latitude (PHI) in Dec Degrees.
      // Input: - _
      // XYZ cartesian coords (X,Y,Z) and ellipsoid axis dimensions (a & b), all in meters.

      // this FUNCTION REQUIRES THE "Iterate_XYZ_to_Lat" FUNCTION
      // this FUNCTION IS CALLED BY THE "XYZ_to_H" FUNCTION

        var RootXYSqr = Math.sqrt(Math.pow(X,2) + Math.pow(Y,2));
        var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2);
        var PHI1 = Math.atan2(Z , (RootXYSqr * (1 - e2)) );
        
        var PHI = OpenLayers.Projection.OS.Iterate_XYZ_to_Lat(a, e2, PHI1, Z, RootXYSqr);
        
        var Pi = 3.14159265358979;
        
        return PHI * (180 / Pi);
    },


    Iterate_XYZ_to_Lat: function(a, e2, PHI1, Z, RootXYSqr) {
      // Iteratively computes Latitude (PHI).
      // Input: - _
      //    ellipsoid semi major axis (a) in meters; _
      //    eta squared (e2); _
      //    estimated value for latitude (PHI1) in radians; _
      //    cartesian Z coordinate (Z) in meters; _
      // RootXYSqr computed from X & Y in meters.

      // this FUNCTION IS CALLED BY THE "XYZ_to_PHI" FUNCTION
      // this FUNCTION IS ALSO USED ON IT'S OWN IN THE _
      // "Projection and Transformation Calculations.xls" SPREADSHEET


        var V = a / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(PHI1),2))));
        var PHI2 = Math.atan2((Z + (e2 * V * (Math.sin(PHI1)))) , RootXYSqr);
        
        while (Math.abs(PHI1 - PHI2) > 0.000000001) {
            PHI1 = PHI2;
            V = a / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(PHI1),2))));
            PHI2 = Math.atan2((Z + (e2 * V * (Math.sin(PHI1)))) , RootXYSqr);
        }

        return PHI2;
    },


    XYZ_to_Long: function (X, Y) {
      // Convert XYZ to Longitude (LAM) in Dec Degrees.
      // Input: - _
      // X and Y cartesian coords in meters.

        var Pi = 3.14159265358979;
        return Math.atan2(Y , X) * (180 / Pi);
    },

    Marc: function (bf0, n, PHI0, PHI) {
      //Compute meridional arc.
      //Input: - _
      // ellipsoid semi major axis multiplied by central meridian scale factor (bf0) in meters; _
      // n (computed from a, b and f0); _
      // lat of false origin (PHI0) and initial or final latitude of point (PHI) IN RADIANS.

      //this FUNCTION IS CALLED BY THE - _
      // "Lat_Long_to_North" and "InitialLat" FUNCTIONS
      // this FUNCTION IS ALSO USED ON IT'S OWN IN THE "Projection and Transformation Calculations.xls" SPREADSHEET

        return bf0 * (((1 + n + ((5 / 4) * Math.pow(n,2)) + ((5 / 4) * Math.pow(n,3))) * (PHI - PHI0)) - (((3 * n) + (3 * Math.pow(n,2)) + ((21 / 8) * Math.pow(n,3))) * (Math.sin(PHI - PHI0)) * (Math.cos(PHI + PHI0))) + ((((15 / 8
      ) * Math.pow(n,2)) + ((15 / 8) * Math.pow(n,3))) * (Math.sin(2 * (PHI - PHI0))) * (Math.cos(2 * (PHI + PHI0)))) - (((35 / 24) * Math.pow(n,3)) * (Math.sin(3 * (PHI - PHI0))) * (Math.cos(3 * (PHI + PHI0)))));
    },

    Lat_Long_to_East: function (PHI, LAM, a, b, e0, f0, PHI0, LAM0) {
      //Project Latitude and longitude to Transverse Mercator eastings.
      //Input: - _
      //    Latitude (PHI) and Longitude (LAM) in decimal degrees; _
      //    ellipsoid axis dimensions (a & b) in meters; _
      //    eastings of false origin (e0) in meters; _
      //    central meridian scale factor (f0); _
      // latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees.

      // Convert angle measures to radians
        var Pi = 3.14159265358979;
        var RadPHI = PHI * (Pi / 180);
        var RadLAM = LAM * (Pi / 180);
        var RadPHI0 = PHI0 * (Pi / 180);
        var RadLAM0 = LAM0 * (Pi / 180);

        var af0 = a * f0;
        var bf0 = b * f0;
        var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2);
        var n = (af0 - bf0) / (af0 + bf0);
        var nu = af0 / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(RadPHI),2) )));
        var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(RadPHI),2) ));
        var eta2 = (nu / rho) - 1;
        var p = RadLAM - RadLAM0;
        
        var IV = nu * (Math.cos(RadPHI));
        var V = (nu / 6) * ( Math.pow(Math.cos(RadPHI),3)) * ((nu / rho) - (Math.pow(Math.tan(RadPHI),2)));
        var VI = (nu / 120) * (Math.pow(Math.cos(RadPHI),5)) * (5 - (18 * (Math.pow(Math.tan(RadPHI),2))) + (Math.pow(Math.tan(RadPHI),4)) + (14 * eta2) - (58 * (Math.pow(Math.tan(RadPHI),2)) * eta2));
        
        return e0 + (p * IV) + (Math.pow(p,3) * V) + (Math.pow(p,5) * VI);
    },

    Lat_Long_to_North: function (PHI, LAM, a, b, e0, n0, f0, PHI0, LAM0) {
      // Project Latitude and longitude to Transverse Mercator northings
      // Input: - _
      // Latitude (PHI) and Longitude (LAM) in decimal degrees; _
      // ellipsoid axis dimensions (a & b) in meters; _
      // eastings (e0) and northings (n0) of false origin in meters; _
      // central meridian scale factor (f0); _
      // latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees.

      // REQUIRES THE "Marc" FUNCTION

      // Convert angle measures to radians
        var Pi = 3.14159265358979;
        var RadPHI = PHI * (Pi / 180);
        var RadLAM = LAM * (Pi / 180);
        var RadPHI0 = PHI0 * (Pi / 180);
        var RadLAM0 = LAM0 * (Pi / 180);
        
        var af0 = a * f0;
        var bf0 = b * f0;
        var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2);
        var n = (af0 - bf0) / (af0 + bf0);
        var nu = af0 / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(RadPHI),2))));
        var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(RadPHI),2)));
        var eta2 = (nu / rho) - 1;
        var p = RadLAM - RadLAM0;
        var M = OpenLayers.Projection.OS.Marc(bf0, n, RadPHI0, RadPHI);
        
        var I = M + n0;
        var II = (nu / 2) * (Math.sin(RadPHI)) * (Math.cos(RadPHI));
        var III = ((nu / 24) * (Math.sin(RadPHI)) * (Math.pow(Math.cos(RadPHI),3))) * (5 - (Math.pow(Math.tan(RadPHI),2)) + (9 * eta2));
        var IIIA = ((nu / 720) * (Math.sin(RadPHI)) * (Math.pow(Math.cos(RadPHI),5))) * (61 - (58 * (Math.pow(Math.tan(RadPHI),2))) + (Math.pow(Math.tan(RadPHI),4)));
        
        return I + (Math.pow(p,2) * II) + (Math.pow(p,4) * III) + (Math.pow(p,6) * IIIA);
    }

};

/**
 * Note: Two transforms declared
 * Transforms from EPSG:4326 to EPSG:27700 and from EPSG:27700 to EPSG:4326
 *     are set by this class.
 */
OpenLayers.Projection.addTransform("EPSG:4326", "EPSG:27700",
    OpenLayers.Projection.OS.projectForwardBritish);
OpenLayers.Projection.addTransform("EPSG:27700", "EPSG:4326",
    OpenLayers.Projection.OS.projectInverseBritish);
OpenLayers.Projection.addTransform("EPSG:900913", "EPSG:27700",
    OpenLayers.Projection.OS.goog2osgb);
OpenLayers.Projection.addTransform("EPSG:27700", "EPSG:900913",
    OpenLayers.Projection.OS.osgb2goog);