/** * OpenLayers OSGB Grid Projection Transformations * * Conversion to OpenLayers by Thomas Wood (grand.edgemaster@gmail.com) * * this program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * this program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * --------------------------------------------------------------------------- * * PLEASE DO NOT HOTLINK THIS, save this onto your own server * - I cannot guarantee this file will remain here forever. * * --------------------------------------------------------------------------- * * Credits: * Based from the geotools js library by Paul Dixon * GeoTools javascript coordinate transformations * http://files.dixo.net/geotools.html * * Portions of this file copyright (c)2005 Paul Dixon (paul@elphin.com) * * The algorithm used by the script for WGS84-OSGB36 conversions is derived * from an OSGB spreadsheet (www.gps.gov.uk) with permission. This has been * adapted into Perl by Ian Harris, and into PHP by Barry Hunter. Conversion * accuracy is in the order of 7m for 90% of Great Britain, and should be * be similar to the conversion made by a typical GPSr * */ if (typeof OpenLayers !== "undefined") { OpenLayers.Projection.OS = { /** * Method: projectForwardBritish * Given an object with x and y properties in EPSG:4326, modify the x,y * properties on the object to be the OSGB36 (transverse mercator) * projected coordinates. * * Parameters: * point - {Object} An object with x and y properties. * * Returns: * {Object} The point, with the x and y properties transformed to spherical * mercator. */ projectForwardBritish: function(point) { var x1 = OpenLayers.Projection.OS.Lat_Long_H_to_X(point.y,point.x,0,6378137.00,6356752.313); var y1 = OpenLayers.Projection.OS.Lat_Long_H_to_Y(point.y,point.x,0,6378137.00,6356752.313); var z1 = OpenLayers.Projection.OS.Lat_H_to_Z (point.y, 0,6378137.00,6356752.313); var x2 = OpenLayers.Projection.OS.Helmert_X(x1,y1,z1,-446.448,-0.2470,-0.8421,20.4894); var y2 = OpenLayers.Projection.OS.Helmert_Y(x1,y1,z1, 125.157,-0.1502,-0.8421,20.4894); var z2 = OpenLayers.Projection.OS.Helmert_Z(x1,y1,z1,-542.060,-0.1502,-0.2470,20.4894); var lat2 = OpenLayers.Projection.OS.XYZ_to_Lat (x2,y2,z2,6377563.396,6356256.910); var lon2 = OpenLayers.Projection.OS.XYZ_to_Long(x2,y2); point.x = OpenLayers.Projection.OS.Lat_Long_to_East (lat2,lon2,6377563.396,6356256.910,400000,0.999601272,49.00000,-2.00000); point.y = OpenLayers.Projection.OS.Lat_Long_to_North(lat2,lon2,6377563.396,6356256.910,400000,-100000,0.999601272,49.00000,-2.00000); return point; }, /** * Method: projectInverseBritish * Given an object with x and y properties in OSGB36 (transverse mercator), * modify the x,y properties on the object to be the unprojected coordinates. * * Parameters: * point - {Object} An object with x and y properties. * * Returns: * {Object} The point, with the x and y properties transformed from * OSGB36 to unprojected coordinates.. */ projectInverseBritish: function(point) { var lat1 = OpenLayers.Projection.OS.E_N_to_Lat (point.x,point.y,6377563.396,6356256.910,400000,-100000,0.999601272,49.00000,-2.00000); var lon1 = OpenLayers.Projection.OS.E_N_to_Long(point.x,point.y,6377563.396,6356256.910,400000,-100000,0.999601272,49.00000,-2.00000); var x1 = OpenLayers.Projection.OS.Lat_Long_H_to_X(lat1,lon1,0,6377563.396,6356256.910); var y1 = OpenLayers.Projection.OS.Lat_Long_H_to_Y(lat1,lon1,0,6377563.396,6356256.910); var z1 = OpenLayers.Projection.OS.Lat_H_to_Z (lat1, 0,6377563.396,6356256.910); var x2 = OpenLayers.Projection.OS.Helmert_X(x1,y1,z1,446.448 ,0.2470,0.8421,-20.4894); var y2 = OpenLayers.Projection.OS.Helmert_Y(x1,y1,z1,-125.157,0.1502,0.8421,-20.4894); var z2 = OpenLayers.Projection.OS.Helmert_Z(x1,y1,z1,542.060 ,0.1502,0.2470,-20.4894); var lat = OpenLayers.Projection.OS.XYZ_to_Lat(x2,y2,z2,6378137.000,6356752.313); var lon = OpenLayers.Projection.OS.XYZ_to_Long(x2,y2); point.x = lon; point.y = lat; return point; }, goog2osgb: function(point) { var p1 = OpenLayers.Layer.SphericalMercator.inverseMercator(point.x, point.y); var p2 = OpenLayers.Projection.OS.projectForwardBritish({x: p1.lon, y: p1.lat}); point.x = p2.x; point.y = p2.y; return point; }, osgb2goog: function(point) { var p1 = OpenLayers.Projection.OS.projectInverseBritish(point); var p2 = OpenLayers.Layer.SphericalMercator.forwardMercator(p1.x, p1.y); point.x = p2.lon; point.y = p2.lat; return point; }, /***** * Mathematical functions *****/ E_N_to_Lat: function(East, North, a, b, e0, n0, f0, PHI0, LAM0) { //Un-project Transverse Mercator eastings and northings back to latitude. //eastings (East) and northings (North) in meters; _ //ellipsoid axis dimensions (a & b) in meters; _ //eastings (e0) and northings (n0) of false origin in meters; _ //central meridian scale factor (f0) and _ //latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees. //Convert angle measures to radians var Pi = 3.14159265358979; var RadPHI0 = PHI0 * (Pi / 180); var RadLAM0 = LAM0 * (Pi / 180); //Compute af0, bf0, e squared (e2), n and Et var af0 = a * f0; var bf0 = b * f0; var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2); var n = (af0 - bf0) / (af0 + bf0); var Et = East - e0; //Compute initial value for latitude (PHI) in radians var PHId = OpenLayers.Projection.OS.InitialLat(North, n0, af0, RadPHI0, n, bf0); //Compute nu, rho and eta2 using value for PHId var nu = af0 / (Math.sqrt(1 - (e2 * ( Math.pow(Math.sin(PHId),2))))); var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(PHId),2))); var eta2 = (nu / rho) - 1; //Compute Latitude var VII = (Math.tan(PHId)) / (2 * rho * nu); var VIII = ((Math.tan(PHId)) / (24 * rho * Math.pow(nu,3))) * (5 + (3 * (Math.pow(Math.tan(PHId),2))) + eta2 - (9 * eta2 * (Math.pow(Math.tan(PHId),2)))); var IX = ((Math.tan(PHId)) / (720 * rho * Math.pow(nu,5))) * (61 + (90 * ((Math.tan(PHId)) ^ 2)) + (45 * (Math.pow(Math.tan(PHId),4)))); var E_N_to_Lat = (180 / Pi) * (PHId - (Math.pow(Et,2) * VII) + (Math.pow(Et,4) * VIII) - ((Et ^ 6) * IX)); return (E_N_to_Lat); }, E_N_to_Long: function(East, North, a, b, e0, n0, f0, PHI0, LAM0) { //Un-project Transverse Mercator eastings and northings back to longitude. //eastings (East) and northings (North) in meters; _ //ellipsoid axis dimensions (a & b) in meters; _ //eastings (e0) and northings (n0) of false origin in meters; _ //central meridian scale factor (f0) and _ //latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees. //Convert angle measures to radians var Pi = 3.14159265358979; var RadPHI0 = PHI0 * (Pi / 180); var RadLAM0 = LAM0 * (Pi / 180); //Compute af0, bf0, e squared (e2), n and Et var af0 = a * f0; var bf0 = b * f0; var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2); var n = (af0 - bf0) / (af0 + bf0); var Et = East - e0; //Compute initial value for latitude (PHI) in radians var PHId = OpenLayers.Projection.OS.InitialLat(North, n0, af0, RadPHI0, n, bf0); //Compute nu, rho and eta2 using value for PHId var nu = af0 / (Math.sqrt(1 - (e2 * (Math.pow(Math.sin(PHId),2))))); var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(PHId),2))); var eta2 = (nu / rho) - 1; //Compute Longitude var X = (Math.pow(Math.cos(PHId),-1)) / nu; var XI = ((Math.pow(Math.cos(PHId),-1)) / (6 * Math.pow(nu,3))) * ((nu / rho) + (2 * (Math.pow(Math.tan(PHId),2)))); var XII = ((Math.pow(Math.cos(PHId),-1)) / (120 * Math.pow(nu,5))) * (5 + (28 * (Math.pow(Math.tan(PHId),2))) + (24 * (Math.pow(Math.tan(PHId),4)))); var XIIA = ((Math.pow(Math.cos(PHId),-1)) / (5040 * Math.pow(nu,7))) * (61 + (662 * (Math.pow(Math.tan(PHId),2))) + (1320 * (Math.pow(Math.tan(PHId),4))) + (720 * (Math.pow(Math.tan(PHId),6)))); var E_N_to_Long = (180 / Pi) * (RadLAM0 + (Et * X) - (Math.pow(Et,3) * XI) + (Math.pow(Et,5) * XII) - (Math.pow(Et,7) * XIIA)); return E_N_to_Long; }, InitialLat: function(North, n0, afo, PHI0, n, bfo) { //Compute initial value for Latitude (PHI) IN RADIANS. //northing of point (North) and northing of false origin (n0) in meters; _ //semi major axis multiplied by central meridian scale factor (af0) in meters; _ //latitude of false origin (PHI0) IN RADIANS; _ //n (computed from a, b and f0) and _ //ellipsoid semi major axis multiplied by central meridian scale factor (bf0) in meters. //First PHI value (PHI1) var PHI1 = ((North - n0) / afo) + PHI0; //Calculate M var M = OpenLayers.Projection.OS.Marc(bfo, n, PHI0, PHI1); //Calculate new PHI value (PHI2) var PHI2 = ((North - n0 - M) / afo) + PHI1; //Iterate to get final value for InitialLat while (Math.abs(North - n0 - M) > 0.00001) { PHI2 = ((North - n0 - M) / afo) + PHI1; M = OpenLayers.Projection.OS.Marc(bfo, n, PHI0, PHI2); PHI1 = PHI2; } return PHI2; }, Lat_Long_H_to_X: function(PHI, LAM, H, a, b) { // Convert geodetic coords lat (PHI), long (LAM) and height (H) to cartesian X coordinate. // Input: - _ // Latitude (PHI)& Longitude (LAM) both in decimal degrees; _ // Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters. // Convert angle measures to radians var Pi = 3.14159265358979; var RadPHI = PHI * (Pi / 180); var RadLAM = LAM * (Pi / 180); // Compute eccentricity squared and nu var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2); var V = a / (Math.sqrt(1 - (e2 * ( Math.pow(Math.sin(RadPHI),2))))); // Compute X return (V + H) * (Math.cos(RadPHI)) * (Math.cos(RadLAM)); }, Lat_Long_H_to_Y: function(PHI, LAM, H, a, b) { // Convert geodetic coords lat (PHI), long (LAM) and height (H) to cartesian Y coordinate. // Input: - _ // Latitude (PHI)& Longitude (LAM) both in decimal degrees; _ // Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters. // Convert angle measures to radians var Pi = 3.14159265358979; var RadPHI = PHI * (Pi / 180); var RadLAM = LAM * (Pi / 180); // Compute eccentricity squared and nu var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2); var V = a / (Math.sqrt(1 - (e2 * ( Math.pow(Math.sin(RadPHI),2))) )); // Compute Y return (V + H) * (Math.cos(RadPHI)) * (Math.sin(RadLAM)); }, Lat_H_to_Z: function(PHI, H, a, b) { // Convert geodetic coord components latitude (PHI) and height (H) to cartesian Z coordinate. // Input: - _ // Latitude (PHI) decimal degrees; _ // Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters. // Convert angle measures to radians var Pi = 3.14159265358979; var RadPHI = PHI * (Pi / 180); // Compute eccentricity squared and nu var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2); var V = a / (Math.sqrt(1 - (e2 * ( Math.pow(Math.sin(RadPHI),2)) ))); // Compute X return ((V * (1 - e2)) + H) * (Math.sin(RadPHI)); }, Helmert_X: function(X,Y,Z,DX,Y_Rot,Z_Rot,s) { // (X, Y, Z, DX, Y_Rot, Z_Rot, s) // Computed Helmert transformed X coordinate. // Input: - _ // cartesian XYZ coords (X,Y,Z), X translation (DX) all in meters ; _ // Y and Z rotations in seconds of arc (Y_Rot, Z_Rot) and scale in ppm (s). // Convert rotations to radians and ppm scale to a factor var Pi = 3.14159265358979; var sfactor = s * 0.000001; var RadY_Rot = (Y_Rot / 3600) * (Pi / 180); var RadZ_Rot = (Z_Rot / 3600) * (Pi / 180); //Compute transformed X coord return (X + (X * sfactor) - (Y * RadZ_Rot) + (Z * RadY_Rot) + DX); }, Helmert_Y: function(X,Y,Z,DY,X_Rot,Z_Rot,s) { // Computed Helmert transformed Y coordinate. // Input: - _ // cartesian XYZ coords (X,Y,Z), Y translation (DY) all in meters ; _ // X and Z rotations in seconds of arc (X_Rot, Z_Rot) and scale in ppm (s). // Convert rotations to radians and ppm scale to a factor var Pi = 3.14159265358979; var sfactor = s * 0.000001; var RadX_Rot = (X_Rot / 3600) * (Pi / 180); var RadZ_Rot = (Z_Rot / 3600) * (Pi / 180); // Compute transformed Y coord return (X * RadZ_Rot) + Y + (Y * sfactor) - (Z * RadX_Rot) + DY; }, Helmert_Z: function(X, Y, Z, DZ, X_Rot, Y_Rot, s) { // Computed Helmert transformed Z coordinate. // Input: - _ // cartesian XYZ coords (X,Y,Z), Z translation (DZ) all in meters ; _ // X and Y rotations in seconds of arc (X_Rot, Y_Rot) and scale in ppm (s). // // Convert rotations to radians and ppm scale to a factor var Pi = 3.14159265358979; var sfactor = s * 0.000001; var RadX_Rot = (X_Rot / 3600) * (Pi / 180); var RadY_Rot = (Y_Rot / 3600) * (Pi / 180); // Compute transformed Z coord return (-1 * X * RadY_Rot) + (Y * RadX_Rot) + Z + (Z * sfactor) + DZ; } , XYZ_to_Lat: function(X, Y, Z, a, b) { // Convert XYZ to Latitude (PHI) in Dec Degrees. // Input: - _ // XYZ cartesian coords (X,Y,Z) and ellipsoid axis dimensions (a & b), all in meters. // this FUNCTION REQUIRES THE "Iterate_XYZ_to_Lat" FUNCTION // this FUNCTION IS CALLED BY THE "XYZ_to_H" FUNCTION var RootXYSqr = Math.sqrt(Math.pow(X,2) + Math.pow(Y,2)); var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2); var PHI1 = Math.atan2(Z , (RootXYSqr * (1 - e2)) ); var PHI = OpenLayers.Projection.OS.Iterate_XYZ_to_Lat(a, e2, PHI1, Z, RootXYSqr); var Pi = 3.14159265358979; return PHI * (180 / Pi); }, Iterate_XYZ_to_Lat: function(a, e2, PHI1, Z, RootXYSqr) { // Iteratively computes Latitude (PHI). // Input: - _ // ellipsoid semi major axis (a) in meters; _ // eta squared (e2); _ // estimated value for latitude (PHI1) in radians; _ // cartesian Z coordinate (Z) in meters; _ // RootXYSqr computed from X & Y in meters. // this FUNCTION IS CALLED BY THE "XYZ_to_PHI" FUNCTION // this FUNCTION IS ALSO USED ON IT'S OWN IN THE _ // "Projection and Transformation Calculations.xls" SPREADSHEET var V = a / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(PHI1),2)))); var PHI2 = Math.atan2((Z + (e2 * V * (Math.sin(PHI1)))) , RootXYSqr); while (Math.abs(PHI1 - PHI2) > 0.000000001) { PHI1 = PHI2; V = a / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(PHI1),2)))); PHI2 = Math.atan2((Z + (e2 * V * (Math.sin(PHI1)))) , RootXYSqr); } return PHI2; }, XYZ_to_Long: function (X, Y) { // Convert XYZ to Longitude (LAM) in Dec Degrees. // Input: - _ // X and Y cartesian coords in meters. var Pi = 3.14159265358979; return Math.atan2(Y , X) * (180 / Pi); }, Marc: function (bf0, n, PHI0, PHI) { //Compute meridional arc. //Input: - _ // ellipsoid semi major axis multiplied by central meridian scale factor (bf0) in meters; _ // n (computed from a, b and f0); _ // lat of false origin (PHI0) and initial or final latitude of point (PHI) IN RADIANS. //this FUNCTION IS CALLED BY THE - _ // "Lat_Long_to_North" and "InitialLat" FUNCTIONS // this FUNCTION IS ALSO USED ON IT'S OWN IN THE "Projection and Transformation Calculations.xls" SPREADSHEET return bf0 * (((1 + n + ((5 / 4) * Math.pow(n,2)) + ((5 / 4) * Math.pow(n,3))) * (PHI - PHI0)) - (((3 * n) + (3 * Math.pow(n,2)) + ((21 / 8) * Math.pow(n,3))) * (Math.sin(PHI - PHI0)) * (Math.cos(PHI + PHI0))) + ((((15 / 8 ) * Math.pow(n,2)) + ((15 / 8) * Math.pow(n,3))) * (Math.sin(2 * (PHI - PHI0))) * (Math.cos(2 * (PHI + PHI0)))) - (((35 / 24) * Math.pow(n,3)) * (Math.sin(3 * (PHI - PHI0))) * (Math.cos(3 * (PHI + PHI0))))); }, Lat_Long_to_East: function (PHI, LAM, a, b, e0, f0, PHI0, LAM0) { //Project Latitude and longitude to Transverse Mercator eastings. //Input: - _ // Latitude (PHI) and Longitude (LAM) in decimal degrees; _ // ellipsoid axis dimensions (a & b) in meters; _ // eastings of false origin (e0) in meters; _ // central meridian scale factor (f0); _ // latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees. // Convert angle measures to radians var Pi = 3.14159265358979; var RadPHI = PHI * (Pi / 180); var RadLAM = LAM * (Pi / 180); var RadPHI0 = PHI0 * (Pi / 180); var RadLAM0 = LAM0 * (Pi / 180); var af0 = a * f0; var bf0 = b * f0; var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2); var n = (af0 - bf0) / (af0 + bf0); var nu = af0 / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(RadPHI),2) ))); var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(RadPHI),2) )); var eta2 = (nu / rho) - 1; var p = RadLAM - RadLAM0; var IV = nu * (Math.cos(RadPHI)); var V = (nu / 6) * ( Math.pow(Math.cos(RadPHI),3)) * ((nu / rho) - (Math.pow(Math.tan(RadPHI),2))); var VI = (nu / 120) * (Math.pow(Math.cos(RadPHI),5)) * (5 - (18 * (Math.pow(Math.tan(RadPHI),2))) + (Math.pow(Math.tan(RadPHI),4)) + (14 * eta2) - (58 * (Math.pow(Math.tan(RadPHI),2)) * eta2)); return e0 + (p * IV) + (Math.pow(p,3) * V) + (Math.pow(p,5) * VI); }, Lat_Long_to_North: function (PHI, LAM, a, b, e0, n0, f0, PHI0, LAM0) { // Project Latitude and longitude to Transverse Mercator northings // Input: - _ // Latitude (PHI) and Longitude (LAM) in decimal degrees; _ // ellipsoid axis dimensions (a & b) in meters; _ // eastings (e0) and northings (n0) of false origin in meters; _ // central meridian scale factor (f0); _ // latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees. // REQUIRES THE "Marc" FUNCTION // Convert angle measures to radians var Pi = 3.14159265358979; var RadPHI = PHI * (Pi / 180); var RadLAM = LAM * (Pi / 180); var RadPHI0 = PHI0 * (Pi / 180); var RadLAM0 = LAM0 * (Pi / 180); var af0 = a * f0; var bf0 = b * f0; var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2); var n = (af0 - bf0) / (af0 + bf0); var nu = af0 / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(RadPHI),2)))); var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(RadPHI),2))); var eta2 = (nu / rho) - 1; var p = RadLAM - RadLAM0; var M = OpenLayers.Projection.OS.Marc(bf0, n, RadPHI0, RadPHI); var I = M + n0; var II = (nu / 2) * (Math.sin(RadPHI)) * (Math.cos(RadPHI)); var III = ((nu / 24) * (Math.sin(RadPHI)) * (Math.pow(Math.cos(RadPHI),3))) * (5 - (Math.pow(Math.tan(RadPHI),2)) + (9 * eta2)); var IIIA = ((nu / 720) * (Math.sin(RadPHI)) * (Math.pow(Math.cos(RadPHI),5))) * (61 - (58 * (Math.pow(Math.tan(RadPHI),2))) + (Math.pow(Math.tan(RadPHI),4))); return I + (Math.pow(p,2) * II) + (Math.pow(p,4) * III) + (Math.pow(p,6) * IIIA); } }; /** * Note: Two transforms declared * Transforms from EPSG:4326 to EPSG:27700 and from EPSG:27700 to EPSG:4326 * are set by this class. */ OpenLayers.Projection.addTransform("EPSG:4326", "EPSG:27700", OpenLayers.Projection.OS.projectForwardBritish); OpenLayers.Projection.addTransform("EPSG:27700", "EPSG:4326", OpenLayers.Projection.OS.projectInverseBritish); OpenLayers.Projection.addTransform("EPSG:900913", "EPSG:27700", OpenLayers.Projection.OS.goog2osgb); OpenLayers.Projection.addTransform("EPSG:3857", "EPSG:27700", OpenLayers.Projection.OS.goog2osgb); OpenLayers.Projection.addTransform("EPSG:27700", "EPSG:900913", OpenLayers.Projection.OS.osgb2goog); OpenLayers.Projection.addTransform("EPSG:27700", "EPSG:3857", OpenLayers.Projection.OS.osgb2goog); }