use FixMyStreet::TestMech;
my $mech = FixMyStreet::TestMech->new;
my $user = $mech->create_user_ok('test@example.com', name => 'Test User');
my $superuser = $mech->create_user_ok('superuser@example.com', name => 'Super User', is_superuser => 1);
my $oxfordshire = $mech->create_body_ok(2237, 'Oxfordshire County Council');
my $oxfordshirecontact = $mech->create_contact_ok( body_id => $oxfordshire->id, category => 'Potholes', email => 'potholes@example.com' );
my $oxfordshireuser = $mech->create_user_ok('counciluser@example.com', name => 'Council User', from_body => $oxfordshire);
my $bromley = $mech->create_body_ok(2482, 'Bromley Council');
$mech->log_in_ok( $superuser->email );
subtest "response priorities can be added" => sub {
is $oxfordshire->response_priorities->count, 0, "No response priorities yet";
$mech->get_ok( "/admin/responsepriorities/" . $oxfordshire->id . "/new" );
my $fields = {
name => "Cat 1A",
description => "Fixed within 24 hours",
deleted => undef,
is_default => undef,
"contacts[".$oxfordshirecontact->id."]" => 1,
};
$mech->submit_form_ok( { with_fields => $fields } );
is $oxfordshire->response_priorities-/**
* OpenLayers OSGB Grid Projection Transformations
*
* Conversion to OpenLayers by Thomas Wood (grand.edgemaster@gmail.com)
*
* this program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* this program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* ---------------------------------------------------------------------------
*
* PLEASE DO NOT HOTLINK THIS, save this onto your own server
* - I cannot guarantee this file will remain here forever.
*
* ---------------------------------------------------------------------------
*
* Credits:
* Based from the geotools js library by Paul Dixon
* GeoTools javascript coordinate transformations
* http://files.dixo.net/geotools.html
*
* Portions of this file copyright (c)2005 Paul Dixon (paul@elphin.com)
*
* The algorithm used by the script for WGS84-OSGB36 conversions is derived
* from an OSGB spreadsheet (www.gps.gov.uk) with permission. This has been
* adapted into Perl by Ian Harris, and into PHP by Barry Hunter. Conversion
* accuracy is in the order of 7m for 90% of Great Britain, and should be
* be similar to the conversion made by a typical GPSr
*
*/
OpenLayers.Projection.OS = {
/**
* Method: projectForwardBritish
* Given an object with x and y properties in EPSG:4326, modify the x,y
* properties on the object to be the OSGB36 (transverse mercator)
* projected coordinates.
*
* Parameters:
* point - {Object} An object with x and y properties.
*
* Returns:
* {Object} The point, with the x and y properties transformed to spherical
* mercator.
*/
projectForwardBritish: function(point) {
var x1 = OpenLayers.Projection.OS.Lat_Long_H_to_X(point.y,point.x,0,6378137.00,6356752.313);
var y1 = OpenLayers.Projection.OS.Lat_Long_H_to_Y(point.y,point.x,0,6378137.00,6356752.313);
var z1 = OpenLayers.Projection.OS.Lat_H_to_Z (point.y, 0,6378137.00,6356752.313);
var x2 = OpenLayers.Projection.OS.Helmert_X(x1,y1,z1,-446.448,-0.2470,-0.8421,20.4894);
var y2 = OpenLayers.Projection.OS.Helmert_Y(x1,y1,z1, 125.157,-0.1502,-0.8421,20.4894);
var z2 = OpenLayers.Projection.OS.Helmert_Z(x1,y1,z1,-542.060,-0.1502,-0.2470,20.4894);
var lat2 = OpenLayers.Projection.OS.XYZ_to_Lat (x2,y2,z2,6377563.396,6356256.910);
var lon2 = OpenLayers.Projection.OS.XYZ_to_Long(x2,y2);
point.x = OpenLayers.Projection.OS.Lat_Long_to_East (lat2,lon2,6377563.396,6356256.910,400000,0.999601272,49.00000,-2.00000);
point.y = OpenLayers.Projection.OS.Lat_Long_to_North(lat2,lon2,6377563.396,6356256.910,400000,-100000,0.999601272,49.00000,-2.00000);
return point;
},
/**
* Method: projectInverseBritish
* Given an object with x and y properties in OSGB36 (transverse mercator),
* modify the x,y properties on the object to be the unprojected coordinates.
*
* Parameters:
* point - {Object} An object with x and y properties.
*
* Returns:
* {Object} The point, with the x and y properties transformed from
* OSGB36 to unprojected coordinates..
*/
projectInverseBritish: function(point) {
var lat1 = OpenLayers.Projection.OS.E_N_to_Lat (point.x,point.y,6377563.396,6356256.910,400000,-100000,0.999601272,49.00000,-2.00000);
var lon1 = OpenLayers.Projection.OS.E_N_to_Long(point.x,point.y,6377563.396,6356256.910,400000,-100000,0.999601272,49.00000,-2.00000);
var x1 = OpenLayers.Projection.OS.Lat_Long_H_to_X(lat1,lon1,0,6377563.396,6356256.910);
var y1 = OpenLayers.Projection.OS.Lat_Long_H_to_Y(lat1,lon1,0,6377563.396,6356256.910);
var z1 = OpenLayers.Projection.OS.Lat_H_to_Z (lat1, 0,6377563.396,6356256.910);
var x2 = OpenLayers.Projection.OS.Helmert_X(x1,y1,z1,446.448 ,0.2470,0.8421,-20.4894);
var y2 = OpenLayers.Projection.OS.Helmert_Y(x1,y1,z1,-125.157,0.1502,0.8421,-20.4894);
var z2 = OpenLayers.Projection.OS.Helmert_Z(x1,y1,z1,542.060 ,0.1502,0.2470,-20.4894);
var lat = OpenLayers.Projection.OS.XYZ_to_Lat(x2,y2,z2,6378137.000,6356752.313);
var lon = OpenLayers.Projection.OS.XYZ_to_Long(x2,y2);
point.x = lon;
point.y = lat;
return point;
},
goog2osgb: function(point) {
return OpenLayers.Projection.OS.projectForwardBritish(OpenLayers.Layer.SphericalMercator.projectInverse(point));
},
osgb2goog: function(point) {
return OpenLayers.Layer.SphericalMercator.projectForward(OpenLayers.Projection.OS.projectInverseBritish(point));
},
/*****
* Mathematical functions
*****/
E_N_to_Lat: function(East, North, a, b, e0, n0, f0, PHI0, LAM0) {
//Un-project Transverse Mercator eastings and northings back to latitude.
//eastings (East) and northings (North) in meters; _
//ellipsoid axis dimensions (a & b) in meters; _
//eastings (e0) and northings (n0) of false origin in meters; _
//central meridian scale factor (f0) and _
//latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees.
//Convert angle measures to radians
var Pi = 3.14159265358979;
var RadPHI0 = PHI0 * (Pi / 180);
var RadLAM0 = LAM0 * (Pi / 180);
//Compute af0, bf0, e squared (e2), n and Et
var af0 = a * f0;
var bf0 = b * f0;
var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2);
var n = (af0 - bf0) / (af0 + bf0);
var Et = East - e0;
//Compute initial value for latitude (PHI) in radians
var PHId = OpenLayers.Projection.OS.InitialLat(North, n0, af0, RadPHI0, n, bf0);
//Compute nu, rho and eta2 using value for PHId
var nu = af0 / (Math.sqrt(1 - (e2 * ( Math.pow(Math.sin(PHId),2)))));
var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(PHId),2)));
var eta2 = (nu / rho) - 1;
//Compute Latitude
var VII = (Math.tan(PHId)) / (2 * rho * nu);
var VIII = ((Math.tan(PHId)) / (24 * rho * Math.pow(nu,3))) * (5 + (3 * (Math.pow(Math.tan(PHId),2))) + eta2 - (9 * eta2 * (Math.pow(Math.tan(PHId),2))));
var IX = ((Math.tan(PHId)) / (720 * rho * Math.pow(nu,5))) * (61 + (90 * ((Math.tan(PHId)) ^ 2)) + (45 * (Math.pow(Math.tan(PHId),4))));
var E_N_to_Lat = (180 / Pi) * (PHId - (Math.pow(Et,2) * VII) + (Math.pow(Et,4) * VIII) - ((Et ^ 6) * IX));
return (E_N_to_Lat);
},
E_N_to_Long: function(East, North, a, b, e0, n0, f0, PHI0, LAM0) {
//Un-project Transverse Mercator eastings and northings back to longitude.
//eastings (East) and northings (North) in meters; _
//ellipsoid axis dimensions (a & b) in meters; _
//eastings (e0) and northings (n0) of false origin in meters; _
//central meridian scale factor (f0) and _
//latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees.
//Convert angle measures to radians
var Pi = 3.14159265358979;
var RadPHI0 = PHI0 * (Pi / 180);
var RadLAM0 = LAM0 * (Pi / 180);
//Compute af0, bf0, e squared (e2), n and Et
var af0 = a * f0;
var bf0 = b * f0;
var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2);
var n = (af0 - bf0) / (af0 + bf0);
var Et = East - e0;
//Compute initial value for latitude (PHI) in radians
var PHId = OpenLayers.Projection.OS.InitialLat(North, n0, af0, RadPHI0, n, bf0);
//Compute nu, rho and eta2 using value for PHId
var nu = af0 / (Math.sqrt(1 - (e2 * (Math.pow(Math.sin(PHId),2)))));
var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(PHId),2)));
var eta2 = (nu / rho) - 1;
//Compute Longitude
var X = (Math.pow(Math.cos(PHId),-1)) / nu;
var XI = ((Math.pow(Math.cos(PHId),-1)) / (6 * Math.pow(nu,3))) * ((nu / rho) + (2 * (Math.pow(Math.tan(PHId),2))));
var XII = ((Math.pow(Math.cos(PHId),-1)) / (120 * Math.pow(nu,5))) * (5 + (28 * (Math.pow(Math.tan(PHId),2))) + (24 * (Math.pow(Math.tan(PHId),4))));
var XIIA = ((Math.pow(Math.cos(PHId),-1)) / (5040 * Math.pow(nu,7))) * (61 + (662 * (Math.pow(Math.tan(PHId),2))) + (1320 * (Math.pow(Math.tan(PHId),4))) + (720 * (Math.pow(Math.tan(PHId),6))));
var E_N_to_Long = (180 / Pi) * (RadLAM0 + (Et * X) - (Math.pow(Et,3) * XI) + (Math.pow(Et,5) * XII) - (Math.pow(Et,7) * XIIA));
return E_N_to_Long;
},
InitialLat: function(North, n0, afo, PHI0, n, bfo) {
//Compute initial value for Latitude (PHI) IN RADIANS.
//northing of point (North) and northing of false origin (n0) in meters; _
//semi major axis multiplied by central meridian scale factor (af0) in meters; _
//latitude of false origin (PHI0) IN RADIANS; _
//n (computed from a, b and f0) and _
//ellipsoid semi major axis multiplied by central meridian scale factor (bf0) in meters.
//First PHI value (PHI1)
var PHI1 = ((North - n0) / afo) + PHI0;
//Calculate M
var M = OpenLayers.Projection.OS.Marc(bfo, n, PHI0, PHI1);
//Calculate new PHI value (PHI2)
var PHI2 = ((North - n0 - M) / afo) + PHI1;
//Iterate to get final value for InitialLat
while (Math.abs(North - n0 - M) > 0.00001)
{
PHI2 = ((North - n0 - M) / afo) + PHI1;
M = OpenLayers.Projection.OS.Marc(bfo, n, PHI0, PHI2);
PHI1 = PHI2;
}
return PHI2;
},
Lat_Long_H_to_X: function(PHI, LAM, H, a, b) {
// Convert geodetic coords lat (PHI), long (LAM) and height (H) to cartesian X coordinate.
// Input: - _
// Latitude (PHI)& Longitude (LAM) both in decimal degrees; _
// Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters.
// Convert angle measures to radians
var Pi = 3.14159265358979;
var RadPHI = PHI * (Pi / 180);
var RadLAM = LAM * (Pi / 180);
// Compute eccentricity squared and nu
var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2);
var V = a / (Math.sqrt(1 - (e2 * ( Math.pow(Math.sin(RadPHI),2)))));
// Compute X
return (V + H) * (Math.cos(RadPHI)) * (Math.cos(RadLAM));
},
Lat_Long_H_to_Y: function(PHI, LAM, H, a, b) {
// Convert geodetic coords lat (PHI), long (LAM) and height (H) to cartesian Y coordinate.
// Input: - _
// Latitude (PHI)& Longitude (LAM) both in decimal degrees; _
// Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters.
// Convert angle measures to radians
var Pi = 3.14159265358979;
var RadPHI = PHI * (Pi / 180);
var RadLAM = LAM * (Pi / 180);
// Compute eccentricity squared and nu
var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2);
var V = a / (Math.sqrt(1 - (e2 * ( Math.pow(Math.sin(RadPHI),2))) ));
// Compute Y
return (V + H) * (Math.cos(RadPHI)) * (Math.sin(RadLAM));
},
Lat_H_to_Z: function(PHI, H, a, b) {
// Convert geodetic coord components latitude (PHI) and height (H) to cartesian Z coordinate.
// Input: - _
// Latitude (PHI) decimal degrees; _
// Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters.
// Convert angle measures to radians
var Pi = 3.14159265358979;
var RadPHI = PHI * (Pi / 180);
// Compute eccentricity squared and nu
var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2);
var V = a / (Math.sqrt(1 - (e2 * ( Math.pow(Math.sin(RadPHI),2)) )));
// Compute X
return ((V * (1 - e2)) + H) * (Math.sin(RadPHI));
},
Helmert_X: function(X,Y,Z,DX,Y_Rot,Z_Rot,s) {
// (X, Y, Z, DX, Y_Rot, Z_Rot, s)
// Computed Helmert transformed X coordinate.
// Input: - _
// cartesian XYZ coords (X,Y,Z), X translation (DX) all in meters ; _
// Y and Z rotations in seconds of arc (Y_Rot, Z_Rot) and scale in ppm (s).
// Convert rotations to radians and ppm scale to a factor
var Pi = 3.14159265358979;
var sfactor = s * 0.000001;
var RadY_Rot = (Y_Rot / 3600) * (Pi / 180);
var RadZ_Rot = (Z_Rot / 3600) * (Pi / 180);
//Compute transformed X coord
return (X + (X * sfactor) - (Y * RadZ_Rot) + (Z * RadY_Rot) + DX);
},
Helmert_Y: function(X,Y,Z,DY,X_Rot,Z_Rot,s) {
// Computed Helmert transformed Y coordinate.
// Input: - _
// cartesian XYZ coords (X,Y,Z), Y translation (DY) all in meters ; _
// X and Z rotations in seconds of arc (X_Rot, Z_Rot) and scale in ppm (s).
// Convert rotations to radians and ppm scale to a factor
var Pi = 3.14159265358979;
var sfactor = s * 0.000001;
var RadX_Rot = (X_Rot / 3600) * (Pi / 180);
var RadZ_Rot = (Z_Rot / 3600) * (Pi / 180);
// Compute transformed Y coord
return (X * RadZ_Rot) + Y + (Y * sfactor) - (Z * RadX_Rot) + DY;
},
Helmert_Z: function(X, Y, Z, DZ, X_Rot, Y_Rot, s) {
// Computed Helmert transformed Z coordinate.
// Input: - _
// cartesian XYZ coords (X,Y,Z), Z translation (DZ) all in meters ; _
// X and Y rotations in seconds of arc (X_Rot, Y_Rot) and scale in ppm (s).
//
// Convert rotations to radians and ppm scale to a factor
var Pi = 3.14159265358979;
var sfactor = s * 0.000001;
var RadX_Rot = (X_Rot / 3600) * (Pi / 180);
var RadY_Rot = (Y_Rot / 3600) * (Pi / 180);
// Compute transformed Z coord
return (-1 * X * RadY_Rot) + (Y * RadX_Rot) + Z + (Z * sfactor) + DZ;
} ,
XYZ_to_Lat: function(X, Y, Z, a, b) {
// Convert XYZ to Latitude (PHI) in Dec Degrees.
// Input: - _
// XYZ cartesian coords (X,Y,Z) and ellipsoid axis dimensions (a & b), all in meters.
// this FUNCTION REQUIRES THE "Iterate_XYZ_to_Lat" FUNCTION
// this FUNCTION IS CALLED BY THE "XYZ_to_H" FUNCTION
var RootXYSqr = Math.sqrt(Math.pow(X,2) + Math.pow(Y,2));
var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2);
var PHI1 = Math.atan2(Z , (RootXYSqr * (1 - e2)) );
var PHI = OpenLayers.Projection.OS.Iterate_XYZ_to_Lat(a, e2, PHI1, Z, RootXYSqr);
var Pi = 3.14159265358979;
return PHI * (180 / Pi);
},
Iterate_XYZ_to_Lat: function(a, e2, PHI1, Z, RootXYSqr) {
// Iteratively computes Latitude (PHI).
// Input: - _
// ellipsoid semi major axis (a) in meters; _
// eta squared (e2); _
// estimated value for latitude (PHI1) in radians; _
// cartesian Z coordinate (Z) in meters; _
// RootXYSqr computed from X & Y in meters.
// this FUNCTION IS CALLED BY THE "XYZ_to_PHI" FUNCTION
// this FUNCTION IS ALSO USED ON IT'S OWN IN THE _
// "Projection and Transformation Calculations.xls" SPREADSHEET
var V = a / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(PHI1),2))));
var PHI2 = Math.atan2((Z + (e2 * V * (Math.sin(PHI1)))) , RootXYSqr);
while (Math.abs(PHI1 - PHI2) > 0.000000001) {
PHI1 = PHI2;
V = a / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(PHI1),2))));
PHI2 = Math.atan2((Z + (e2 * V * (Math.sin(PHI1)))) , RootXYSqr);
}
return PHI2;
},
XYZ_to_Long: function (X, Y) {
// Convert XYZ to Longitude (LAM) in Dec Degrees.
// Input: - _
// X and Y cartesian coords in meters.
var Pi = 3.14159265358979;
return Math.atan2(Y , X) * (180 / Pi);
},
Marc: function (bf0, n, PHI0, PHI) {
//Compute meridional arc.
//Input: - _
// ellipsoid semi major axis multiplied by central meridian scale factor (bf0) in meters; _
// n (computed from a, b and f0); _
// lat of false origin (PHI0) and initial or final latitude of point (PHI) IN RADIANS.
//this FUNCTION IS CALLED BY THE - _
// "Lat_Long_to_North" and "InitialLat" FUNCTIONS
// this FUNCTION IS ALSO USED ON IT'S OWN IN THE "Projection and Transformation Calculations.xls" SPREADSHEET
return bf0 * (((1 + n + ((5 / 4) * Math.pow(n,2)) + ((5 / 4) * Math.pow(n,3))) * (PHI - PHI0)) - (((3 * n) + (3 * Math.pow(n,2)) + ((21 / 8) * Math.pow(n,3))) * (Math.sin(PHI - PHI0)) * (Math.cos(PHI + PHI0))) + ((((15 / 8
) * Math.pow(n,2)) + ((15 / 8) * Math.pow(n,3))) * (Math.sin(2 * (PHI - PHI0))) * (Math.cos(2 * (PHI + PHI0)))) - (((35 / 24) * Math.pow(n,3)) * (Math.sin(3 * (PHI - PHI0))) * (Math.cos(3 * (PHI + PHI0)))));
},
Lat_Long_to_East: function (PHI, LAM, a, b, e0, f0, PHI0, LAM0) {
//Project Latitude and longitude to Transverse Mercator eastings.
//Input: - _
// Latitude (PHI) and Longitude (LAM) in decimal degrees; _
// ellipsoid axis dimensions (a & b) in meters; _
// eastings of false origin (e0) in meters; _
// central meridian scale factor (f0); _
// latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees.
// Convert angle measures to radians
var Pi = 3.14159265358979;
var RadPHI = PHI * (Pi / 180);
var RadLAM = LAM * (Pi / 180);
var RadPHI0 = PHI0 * (Pi / 180);
var RadLAM0 = LAM0 * (Pi / 180);
var af0 = a * f0;
var bf0 = b * f0;
var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2);
var n = (af0 - bf0) / (af0 + bf0);
var nu = af0 / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(RadPHI),2) )));
var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(RadPHI),2) ));
var eta2 = (nu / rho) - 1;
var p = RadLAM - RadLAM0;
var IV = nu * (Math.cos(RadPHI));
var V = (nu / 6) * ( Math.pow(Math.cos(RadPHI),3)) * ((nu / rho) - (Math.pow(Math.tan(RadPHI),2)));
var VI = (nu / 120) * (Math.pow(Math.cos(RadPHI),5)) * (5 - (18 * (Math.pow(Math.tan(RadPHI),2))) + (Math.pow(Math.tan(RadPHI),4)) + (14 * eta2) - (58 * (Math.pow(Math.tan(RadPHI),2)) * eta2));
return e0 + (p * IV) + (Math.pow(p,3) * V) + (Math.pow(p,5) * VI);
},
Lat_Long_to_North: function (PHI, LAM, a, b, e0, n0, f0, PHI0, LAM0) {
// Project Latitude and longitude to Transverse Mercator northings
// Input: - _
// Latitude (PHI) and Longitude (LAM) in decimal degrees; _
// ellipsoid axis dimensions (a & b) in meters; _
// eastings (e0) and northings (n0) of false origin in meters; _
// central meridian scale factor (f0); _
// latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees.
// REQUIRES THE "Marc" FUNCTION
// Convert angle measures to radians
var Pi = 3.14159265358979;
var RadPHI = PHI * (Pi / 180);
var RadLAM = LAM * (Pi / 180);
var RadPHI0 = PHI0 * (Pi / 180);
var RadLAM0 = LAM0 * (Pi / 180);
var af0 = a * f0;
var bf0 = b * f0;
var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2);
var n = (af0 - bf0) / (af0 + bf0);
var nu = af0 / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(RadPHI),2))));
var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(RadPHI),2)));
var eta2 = (nu / rho) - 1;
var p = RadLAM - RadLAM0;
var M = OpenLayers.Projection.OS.Marc(bf0, n, RadPHI0, RadPHI);
var I = M + n0;
var II = (nu / 2) * (Math.sin(RadPHI)) * (Math.cos(RadPHI));
var III = ((nu / 24) * (Math.sin(RadPHI)) * (Math.pow(Math.cos(RadPHI),3))) * (5 - (Math.pow(Math.tan(RadPHI),2)) + (9 * eta2));
var IIIA = ((nu / 720) * (Math.sin(RadPHI)) * (Math.pow(Math.cos(RadPHI),5))) * (61 - (58 * (Math.pow(Math.tan(RadPHI),2))) + (Math.pow(Math.tan(RadPHI),4)));
return I + (Math.pow(p,2) * II) + (Math.pow(p,4) * III) + (Math.pow(p,6) * IIIA);
}
};
/**
* Note: Two transforms declared
* Transforms from EPSG:4326 to EPSG:27700 and from EPSG:27700 to EPSG:4326
* are set by this class.
*/
OpenLayers.Projection.addTransform("EPSG:4326", "EPSG:27700",
OpenLayers.Projection.OS.projectForwardBritish);
OpenLayers.Projection.addTransform("EPSG:27700", "EPSG:4326",
OpenLayers.Projection.OS.projectInverseBritish);
OpenLayers.Projection.addTransform("EPSG:900913", "EPSG:27700",
OpenLayers.Projection.OS.goog2osgb);
OpenLayers.Projection.addTransform("EPSG:27700", "EPSG:900913",
OpenLayers.Projection.OS.osgb2goog);