diff options
Diffstat (limited to 'phonegap/www/js/OpenLayers.Projection.OrdnanceSurvey.js')
-rw-r--r-- | phonegap/www/js/OpenLayers.Projection.OrdnanceSurvey.js | 489 |
1 files changed, 0 insertions, 489 deletions
diff --git a/phonegap/www/js/OpenLayers.Projection.OrdnanceSurvey.js b/phonegap/www/js/OpenLayers.Projection.OrdnanceSurvey.js deleted file mode 100644 index bb596d3bf..000000000 --- a/phonegap/www/js/OpenLayers.Projection.OrdnanceSurvey.js +++ /dev/null @@ -1,489 +0,0 @@ -/** - * OpenLayers OSGB Grid Projection Transformations - * - * Conversion to OpenLayers by Thomas Wood (grand.edgemaster@gmail.com) - * - * this program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version 2 - * of the License, or (at your option) any later version. - * - * this program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - * - * --------------------------------------------------------------------------- - * - * PLEASE DO NOT HOTLINK THIS, save this onto your own server - * - I cannot guarantee this file will remain here forever. - * - * --------------------------------------------------------------------------- - * - * Credits: - * Based from the geotools js library by Paul Dixon - * GeoTools javascript coordinate transformations - * http://files.dixo.net/geotools.html - * - * Portions of this file copyright (c)2005 Paul Dixon (paul@elphin.com) - * - * The algorithm used by the script for WGS84-OSGB36 conversions is derived - * from an OSGB spreadsheet (www.gps.gov.uk) with permission. This has been - * adapted into Perl by Ian Harris, and into PHP by Barry Hunter. Conversion - * accuracy is in the order of 7m for 90% of Great Britain, and should be - * be similar to the conversion made by a typical GPSr - * - */ - -OpenLayers.Projection.OS = { - - /** - * Method: projectForwardBritish - * Given an object with x and y properties in EPSG:4326, modify the x,y - * properties on the object to be the OSGB36 (transverse mercator) - * projected coordinates. - * - * Parameters: - * point - {Object} An object with x and y properties. - * - * Returns: - * {Object} The point, with the x and y properties transformed to spherical - * mercator. - */ - projectForwardBritish: function(point) { - var x1 = OpenLayers.Projection.OS.Lat_Long_H_to_X(point.y,point.x,0,6378137.00,6356752.313); - var y1 = OpenLayers.Projection.OS.Lat_Long_H_to_Y(point.y,point.x,0,6378137.00,6356752.313); - var z1 = OpenLayers.Projection.OS.Lat_H_to_Z (point.y, 0,6378137.00,6356752.313); - - var x2 = OpenLayers.Projection.OS.Helmert_X(x1,y1,z1,-446.448,-0.2470,-0.8421,20.4894); - var y2 = OpenLayers.Projection.OS.Helmert_Y(x1,y1,z1, 125.157,-0.1502,-0.8421,20.4894); - var z2 = OpenLayers.Projection.OS.Helmert_Z(x1,y1,z1,-542.060,-0.1502,-0.2470,20.4894); - - var lat2 = OpenLayers.Projection.OS.XYZ_to_Lat (x2,y2,z2,6377563.396,6356256.910); - var lon2 = OpenLayers.Projection.OS.XYZ_to_Long(x2,y2); - - point.x = OpenLayers.Projection.OS.Lat_Long_to_East (lat2,lon2,6377563.396,6356256.910,400000,0.999601272,49.00000,-2.00000); - point.y = OpenLayers.Projection.OS.Lat_Long_to_North(lat2,lon2,6377563.396,6356256.910,400000,-100000,0.999601272,49.00000,-2.00000); - - return point; - }, - - /** - * Method: projectInverseBritish - * Given an object with x and y properties in OSGB36 (transverse mercator), - * modify the x,y properties on the object to be the unprojected coordinates. - * - * Parameters: - * point - {Object} An object with x and y properties. - * - * Returns: - * {Object} The point, with the x and y properties transformed from - * OSGB36 to unprojected coordinates.. - */ - projectInverseBritish: function(point) { - var lat1 = OpenLayers.Projection.OS.E_N_to_Lat (point.x,point.y,6377563.396,6356256.910,400000,-100000,0.999601272,49.00000,-2.00000); - var lon1 = OpenLayers.Projection.OS.E_N_to_Long(point.x,point.y,6377563.396,6356256.910,400000,-100000,0.999601272,49.00000,-2.00000); - - var x1 = OpenLayers.Projection.OS.Lat_Long_H_to_X(lat1,lon1,0,6377563.396,6356256.910); - var y1 = OpenLayers.Projection.OS.Lat_Long_H_to_Y(lat1,lon1,0,6377563.396,6356256.910); - var z1 = OpenLayers.Projection.OS.Lat_H_to_Z (lat1, 0,6377563.396,6356256.910); - - var x2 = OpenLayers.Projection.OS.Helmert_X(x1,y1,z1,446.448 ,0.2470,0.8421,-20.4894); - var y2 = OpenLayers.Projection.OS.Helmert_Y(x1,y1,z1,-125.157,0.1502,0.8421,-20.4894); - var z2 = OpenLayers.Projection.OS.Helmert_Z(x1,y1,z1,542.060 ,0.1502,0.2470,-20.4894); - - var lat = OpenLayers.Projection.OS.XYZ_to_Lat(x2,y2,z2,6378137.000,6356752.313); - var lon = OpenLayers.Projection.OS.XYZ_to_Long(x2,y2); - - point.x = lon; - point.y = lat; - return point; - }, - - goog2osgb: function(point) { - return OpenLayers.Projection.OS.projectForwardBritish(OpenLayers.Layer.SphericalMercator.projectInverse(point)); - }, - - osgb2goog: function(point) { - return OpenLayers.Layer.SphericalMercator.projectForward(OpenLayers.Projection.OS.projectInverseBritish(point)); - }, - - /***** - * Mathematical functions - *****/ - E_N_to_Lat: function(East, North, a, b, e0, n0, f0, PHI0, LAM0) { - //Un-project Transverse Mercator eastings and northings back to latitude. - //eastings (East) and northings (North) in meters; _ - //ellipsoid axis dimensions (a & b) in meters; _ - //eastings (e0) and northings (n0) of false origin in meters; _ - //central meridian scale factor (f0) and _ - //latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees. - - //Convert angle measures to radians - var Pi = 3.14159265358979; - var RadPHI0 = PHI0 * (Pi / 180); - var RadLAM0 = LAM0 * (Pi / 180); - - //Compute af0, bf0, e squared (e2), n and Et - var af0 = a * f0; - var bf0 = b * f0; - var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2); - var n = (af0 - bf0) / (af0 + bf0); - var Et = East - e0; - - //Compute initial value for latitude (PHI) in radians - var PHId = OpenLayers.Projection.OS.InitialLat(North, n0, af0, RadPHI0, n, bf0); - - //Compute nu, rho and eta2 using value for PHId - var nu = af0 / (Math.sqrt(1 - (e2 * ( Math.pow(Math.sin(PHId),2))))); - var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(PHId),2))); - var eta2 = (nu / rho) - 1; - - //Compute Latitude - var VII = (Math.tan(PHId)) / (2 * rho * nu); - var VIII = ((Math.tan(PHId)) / (24 * rho * Math.pow(nu,3))) * (5 + (3 * (Math.pow(Math.tan(PHId),2))) + eta2 - (9 * eta2 * (Math.pow(Math.tan(PHId),2)))); - var IX = ((Math.tan(PHId)) / (720 * rho * Math.pow(nu,5))) * (61 + (90 * ((Math.tan(PHId)) ^ 2)) + (45 * (Math.pow(Math.tan(PHId),4)))); - - var E_N_to_Lat = (180 / Pi) * (PHId - (Math.pow(Et,2) * VII) + (Math.pow(Et,4) * VIII) - ((Et ^ 6) * IX)); - - return (E_N_to_Lat); - }, - - E_N_to_Long: function(East, North, a, b, e0, n0, f0, PHI0, LAM0) { - //Un-project Transverse Mercator eastings and northings back to longitude. - //eastings (East) and northings (North) in meters; _ - //ellipsoid axis dimensions (a & b) in meters; _ - //eastings (e0) and northings (n0) of false origin in meters; _ - //central meridian scale factor (f0) and _ - //latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees. - - //Convert angle measures to radians - var Pi = 3.14159265358979; - var RadPHI0 = PHI0 * (Pi / 180); - var RadLAM0 = LAM0 * (Pi / 180); - - //Compute af0, bf0, e squared (e2), n and Et - var af0 = a * f0; - var bf0 = b * f0; - var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2); - var n = (af0 - bf0) / (af0 + bf0); - var Et = East - e0; - - //Compute initial value for latitude (PHI) in radians - var PHId = OpenLayers.Projection.OS.InitialLat(North, n0, af0, RadPHI0, n, bf0); - - //Compute nu, rho and eta2 using value for PHId - var nu = af0 / (Math.sqrt(1 - (e2 * (Math.pow(Math.sin(PHId),2))))); - var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(PHId),2))); - var eta2 = (nu / rho) - 1; - - //Compute Longitude - var X = (Math.pow(Math.cos(PHId),-1)) / nu; - var XI = ((Math.pow(Math.cos(PHId),-1)) / (6 * Math.pow(nu,3))) * ((nu / rho) + (2 * (Math.pow(Math.tan(PHId),2)))); - var XII = ((Math.pow(Math.cos(PHId),-1)) / (120 * Math.pow(nu,5))) * (5 + (28 * (Math.pow(Math.tan(PHId),2))) + (24 * (Math.pow(Math.tan(PHId),4)))); - var XIIA = ((Math.pow(Math.cos(PHId),-1)) / (5040 * Math.pow(nu,7))) * (61 + (662 * (Math.pow(Math.tan(PHId),2))) + (1320 * (Math.pow(Math.tan(PHId),4))) + (720 * (Math.pow(Math.tan(PHId),6)))); - - var E_N_to_Long = (180 / Pi) * (RadLAM0 + (Et * X) - (Math.pow(Et,3) * XI) + (Math.pow(Et,5) * XII) - (Math.pow(Et,7) * XIIA)); - - return E_N_to_Long; - }, - - InitialLat: function(North, n0, afo, PHI0, n, bfo) { - //Compute initial value for Latitude (PHI) IN RADIANS. - //northing of point (North) and northing of false origin (n0) in meters; _ - //semi major axis multiplied by central meridian scale factor (af0) in meters; _ - //latitude of false origin (PHI0) IN RADIANS; _ - //n (computed from a, b and f0) and _ - //ellipsoid semi major axis multiplied by central meridian scale factor (bf0) in meters. - - //First PHI value (PHI1) - var PHI1 = ((North - n0) / afo) + PHI0; - - //Calculate M - var M = OpenLayers.Projection.OS.Marc(bfo, n, PHI0, PHI1); - - //Calculate new PHI value (PHI2) - var PHI2 = ((North - n0 - M) / afo) + PHI1; - - //Iterate to get final value for InitialLat - while (Math.abs(North - n0 - M) > 0.00001) - { - PHI2 = ((North - n0 - M) / afo) + PHI1; - M = OpenLayers.Projection.OS.Marc(bfo, n, PHI0, PHI2); - PHI1 = PHI2; - } - return PHI2; - }, - - Lat_Long_H_to_X: function(PHI, LAM, H, a, b) { - // Convert geodetic coords lat (PHI), long (LAM) and height (H) to cartesian X coordinate. - // Input: - _ - // Latitude (PHI)& Longitude (LAM) both in decimal degrees; _ - // Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters. - - // Convert angle measures to radians - var Pi = 3.14159265358979; - var RadPHI = PHI * (Pi / 180); - var RadLAM = LAM * (Pi / 180); - - // Compute eccentricity squared and nu - var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2); - var V = a / (Math.sqrt(1 - (e2 * ( Math.pow(Math.sin(RadPHI),2))))); - - // Compute X - return (V + H) * (Math.cos(RadPHI)) * (Math.cos(RadLAM)); - }, - - - Lat_Long_H_to_Y: function(PHI, LAM, H, a, b) { - // Convert geodetic coords lat (PHI), long (LAM) and height (H) to cartesian Y coordinate. - // Input: - _ - // Latitude (PHI)& Longitude (LAM) both in decimal degrees; _ - // Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters. - - // Convert angle measures to radians - var Pi = 3.14159265358979; - var RadPHI = PHI * (Pi / 180); - var RadLAM = LAM * (Pi / 180); - - // Compute eccentricity squared and nu - var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2); - var V = a / (Math.sqrt(1 - (e2 * ( Math.pow(Math.sin(RadPHI),2))) )); - - // Compute Y - return (V + H) * (Math.cos(RadPHI)) * (Math.sin(RadLAM)); - }, - - - Lat_H_to_Z: function(PHI, H, a, b) { - // Convert geodetic coord components latitude (PHI) and height (H) to cartesian Z coordinate. - // Input: - _ - // Latitude (PHI) decimal degrees; _ - // Ellipsoidal height (H) and ellipsoid axis dimensions (a & b) all in meters. - - // Convert angle measures to radians - var Pi = 3.14159265358979; - var RadPHI = PHI * (Pi / 180); - - // Compute eccentricity squared and nu - var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2); - var V = a / (Math.sqrt(1 - (e2 * ( Math.pow(Math.sin(RadPHI),2)) ))); - - // Compute X - return ((V * (1 - e2)) + H) * (Math.sin(RadPHI)); - }, - - - Helmert_X: function(X,Y,Z,DX,Y_Rot,Z_Rot,s) { - - // (X, Y, Z, DX, Y_Rot, Z_Rot, s) - // Computed Helmert transformed X coordinate. - // Input: - _ - // cartesian XYZ coords (X,Y,Z), X translation (DX) all in meters ; _ - // Y and Z rotations in seconds of arc (Y_Rot, Z_Rot) and scale in ppm (s). - - // Convert rotations to radians and ppm scale to a factor - var Pi = 3.14159265358979; - var sfactor = s * 0.000001; - - var RadY_Rot = (Y_Rot / 3600) * (Pi / 180); - - var RadZ_Rot = (Z_Rot / 3600) * (Pi / 180); - - //Compute transformed X coord - return (X + (X * sfactor) - (Y * RadZ_Rot) + (Z * RadY_Rot) + DX); - }, - - - Helmert_Y: function(X,Y,Z,DY,X_Rot,Z_Rot,s) { - // Computed Helmert transformed Y coordinate. - // Input: - _ - // cartesian XYZ coords (X,Y,Z), Y translation (DY) all in meters ; _ - // X and Z rotations in seconds of arc (X_Rot, Z_Rot) and scale in ppm (s). - - // Convert rotations to radians and ppm scale to a factor - var Pi = 3.14159265358979; - var sfactor = s * 0.000001; - var RadX_Rot = (X_Rot / 3600) * (Pi / 180); - var RadZ_Rot = (Z_Rot / 3600) * (Pi / 180); - - // Compute transformed Y coord - return (X * RadZ_Rot) + Y + (Y * sfactor) - (Z * RadX_Rot) + DY; - }, - - - - Helmert_Z: function(X, Y, Z, DZ, X_Rot, Y_Rot, s) { - // Computed Helmert transformed Z coordinate. - // Input: - _ - // cartesian XYZ coords (X,Y,Z), Z translation (DZ) all in meters ; _ - // X and Y rotations in seconds of arc (X_Rot, Y_Rot) and scale in ppm (s). - // - // Convert rotations to radians and ppm scale to a factor - var Pi = 3.14159265358979; - var sfactor = s * 0.000001; - var RadX_Rot = (X_Rot / 3600) * (Pi / 180); - var RadY_Rot = (Y_Rot / 3600) * (Pi / 180); - - // Compute transformed Z coord - return (-1 * X * RadY_Rot) + (Y * RadX_Rot) + Z + (Z * sfactor) + DZ; - } , - - XYZ_to_Lat: function(X, Y, Z, a, b) { - // Convert XYZ to Latitude (PHI) in Dec Degrees. - // Input: - _ - // XYZ cartesian coords (X,Y,Z) and ellipsoid axis dimensions (a & b), all in meters. - - // this FUNCTION REQUIRES THE "Iterate_XYZ_to_Lat" FUNCTION - // this FUNCTION IS CALLED BY THE "XYZ_to_H" FUNCTION - - var RootXYSqr = Math.sqrt(Math.pow(X,2) + Math.pow(Y,2)); - var e2 = (Math.pow(a,2) - Math.pow(b,2)) / Math.pow(a,2); - var PHI1 = Math.atan2(Z , (RootXYSqr * (1 - e2)) ); - - var PHI = OpenLayers.Projection.OS.Iterate_XYZ_to_Lat(a, e2, PHI1, Z, RootXYSqr); - - var Pi = 3.14159265358979; - - return PHI * (180 / Pi); - }, - - - Iterate_XYZ_to_Lat: function(a, e2, PHI1, Z, RootXYSqr) { - // Iteratively computes Latitude (PHI). - // Input: - _ - // ellipsoid semi major axis (a) in meters; _ - // eta squared (e2); _ - // estimated value for latitude (PHI1) in radians; _ - // cartesian Z coordinate (Z) in meters; _ - // RootXYSqr computed from X & Y in meters. - - // this FUNCTION IS CALLED BY THE "XYZ_to_PHI" FUNCTION - // this FUNCTION IS ALSO USED ON IT'S OWN IN THE _ - // "Projection and Transformation Calculations.xls" SPREADSHEET - - - var V = a / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(PHI1),2)))); - var PHI2 = Math.atan2((Z + (e2 * V * (Math.sin(PHI1)))) , RootXYSqr); - - while (Math.abs(PHI1 - PHI2) > 0.000000001) { - PHI1 = PHI2; - V = a / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(PHI1),2)))); - PHI2 = Math.atan2((Z + (e2 * V * (Math.sin(PHI1)))) , RootXYSqr); - } - - return PHI2; - }, - - - XYZ_to_Long: function (X, Y) { - // Convert XYZ to Longitude (LAM) in Dec Degrees. - // Input: - _ - // X and Y cartesian coords in meters. - - var Pi = 3.14159265358979; - return Math.atan2(Y , X) * (180 / Pi); - }, - - Marc: function (bf0, n, PHI0, PHI) { - //Compute meridional arc. - //Input: - _ - // ellipsoid semi major axis multiplied by central meridian scale factor (bf0) in meters; _ - // n (computed from a, b and f0); _ - // lat of false origin (PHI0) and initial or final latitude of point (PHI) IN RADIANS. - - //this FUNCTION IS CALLED BY THE - _ - // "Lat_Long_to_North" and "InitialLat" FUNCTIONS - // this FUNCTION IS ALSO USED ON IT'S OWN IN THE "Projection and Transformation Calculations.xls" SPREADSHEET - - return bf0 * (((1 + n + ((5 / 4) * Math.pow(n,2)) + ((5 / 4) * Math.pow(n,3))) * (PHI - PHI0)) - (((3 * n) + (3 * Math.pow(n,2)) + ((21 / 8) * Math.pow(n,3))) * (Math.sin(PHI - PHI0)) * (Math.cos(PHI + PHI0))) + ((((15 / 8 - ) * Math.pow(n,2)) + ((15 / 8) * Math.pow(n,3))) * (Math.sin(2 * (PHI - PHI0))) * (Math.cos(2 * (PHI + PHI0)))) - (((35 / 24) * Math.pow(n,3)) * (Math.sin(3 * (PHI - PHI0))) * (Math.cos(3 * (PHI + PHI0))))); - }, - - Lat_Long_to_East: function (PHI, LAM, a, b, e0, f0, PHI0, LAM0) { - //Project Latitude and longitude to Transverse Mercator eastings. - //Input: - _ - // Latitude (PHI) and Longitude (LAM) in decimal degrees; _ - // ellipsoid axis dimensions (a & b) in meters; _ - // eastings of false origin (e0) in meters; _ - // central meridian scale factor (f0); _ - // latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees. - - // Convert angle measures to radians - var Pi = 3.14159265358979; - var RadPHI = PHI * (Pi / 180); - var RadLAM = LAM * (Pi / 180); - var RadPHI0 = PHI0 * (Pi / 180); - var RadLAM0 = LAM0 * (Pi / 180); - - var af0 = a * f0; - var bf0 = b * f0; - var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2); - var n = (af0 - bf0) / (af0 + bf0); - var nu = af0 / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(RadPHI),2) ))); - var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(RadPHI),2) )); - var eta2 = (nu / rho) - 1; - var p = RadLAM - RadLAM0; - - var IV = nu * (Math.cos(RadPHI)); - var V = (nu / 6) * ( Math.pow(Math.cos(RadPHI),3)) * ((nu / rho) - (Math.pow(Math.tan(RadPHI),2))); - var VI = (nu / 120) * (Math.pow(Math.cos(RadPHI),5)) * (5 - (18 * (Math.pow(Math.tan(RadPHI),2))) + (Math.pow(Math.tan(RadPHI),4)) + (14 * eta2) - (58 * (Math.pow(Math.tan(RadPHI),2)) * eta2)); - - return e0 + (p * IV) + (Math.pow(p,3) * V) + (Math.pow(p,5) * VI); - }, - - Lat_Long_to_North: function (PHI, LAM, a, b, e0, n0, f0, PHI0, LAM0) { - // Project Latitude and longitude to Transverse Mercator northings - // Input: - _ - // Latitude (PHI) and Longitude (LAM) in decimal degrees; _ - // ellipsoid axis dimensions (a & b) in meters; _ - // eastings (e0) and northings (n0) of false origin in meters; _ - // central meridian scale factor (f0); _ - // latitude (PHI0) and longitude (LAM0) of false origin in decimal degrees. - - // REQUIRES THE "Marc" FUNCTION - - // Convert angle measures to radians - var Pi = 3.14159265358979; - var RadPHI = PHI * (Pi / 180); - var RadLAM = LAM * (Pi / 180); - var RadPHI0 = PHI0 * (Pi / 180); - var RadLAM0 = LAM0 * (Pi / 180); - - var af0 = a * f0; - var bf0 = b * f0; - var e2 = (Math.pow(af0,2) - Math.pow(bf0,2)) / Math.pow(af0,2); - var n = (af0 - bf0) / (af0 + bf0); - var nu = af0 / (Math.sqrt(1 - (e2 * Math.pow(Math.sin(RadPHI),2)))); - var rho = (nu * (1 - e2)) / (1 - (e2 * Math.pow(Math.sin(RadPHI),2))); - var eta2 = (nu / rho) - 1; - var p = RadLAM - RadLAM0; - var M = OpenLayers.Projection.OS.Marc(bf0, n, RadPHI0, RadPHI); - - var I = M + n0; - var II = (nu / 2) * (Math.sin(RadPHI)) * (Math.cos(RadPHI)); - var III = ((nu / 24) * (Math.sin(RadPHI)) * (Math.pow(Math.cos(RadPHI),3))) * (5 - (Math.pow(Math.tan(RadPHI),2)) + (9 * eta2)); - var IIIA = ((nu / 720) * (Math.sin(RadPHI)) * (Math.pow(Math.cos(RadPHI),5))) * (61 - (58 * (Math.pow(Math.tan(RadPHI),2))) + (Math.pow(Math.tan(RadPHI),4))); - - return I + (Math.pow(p,2) * II) + (Math.pow(p,4) * III) + (Math.pow(p,6) * IIIA); - } - -}; - -/** - * Note: Two transforms declared - * Transforms from EPSG:4326 to EPSG:27700 and from EPSG:27700 to EPSG:4326 - * are set by this class. - */ -OpenLayers.Projection.addTransform("EPSG:4326", "EPSG:27700", - OpenLayers.Projection.OS.projectForwardBritish); -OpenLayers.Projection.addTransform("EPSG:27700", "EPSG:4326", - OpenLayers.Projection.OS.projectInverseBritish); -OpenLayers.Projection.addTransform("EPSG:900913", "EPSG:27700", - OpenLayers.Projection.OS.goog2osgb); -OpenLayers.Projection.addTransform("EPSG:27700", "EPSG:900913", - OpenLayers.Projection.OS.osgb2goog); |