1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
# -*- coding: utf-8 -*-
# YAML-tagger:
# Type: kommune
# Status: finished
# Name: Oslo kommunes byrådsavdelinger og Rådhusets forvaltningstjeneste
# Format: HTML
# Datatype:
# Vendor:
# Run: daily
# Missingfields: journalseqnr, journalyear, journalid
# Publish duration: x months
import scraperwiki
import urllib
import urllib2
import lxml.html
import re
import resource
import dateutil.parser
import datetime
import sys
from dateutil.relativedelta import relativedelta
# Some example URLs
#http://byr-journal.cloudapp.net/Journal/SearchRelated?caseYear=2016&sequenceNumber=451
#http://byr-journal.cloudapp.net/Journal/Search?searchStringAdv=FromDate%3D01.09.2016,department%3DAll
#http://byr-journal.cloudapp.net/Journal/Search?searchStringAdv=FromDate%3D01.09.2016,ToDate%3D01.09.2016,department%3DAll
#http://byr-journal.cloudapp.net/Journal/Search/?querytype=and&offset=10
#http://byr-journal.cloudapp.net/Journal/Search/?querytype=and&FromDate=23.08.2016&ToDate=23.08.2016&offset=20
# http://byr-journal.cloudapp.net/Journal/Search?searchStringAdv=FromDate%3D23.08.2016,ToDate%3D23.08.2016,department%3DAll
scraperwiki.scrape("https://www.oslo.kommune.no/postjournal/")
postlistelib=scraperwiki.swimport('postliste-python-lib')
agency = u'Oslo kommune, Byrådsavdelingene'
baseurl = "http://www.oslo.kommune.no"
print "Fetching public journal for %s!" % agency
parser = postlistelib.JournalParser(agency=agency)
fieldmap = {
'Dokumentdato' : 'docdate',
'Dokumenttype' : 'doctype',
'Sak' : 'casedesc',
'Journaldato' : 'recorddate',
'Dato' : None, # Duplicate of recorddate
'Saksansvarlig' : 'saksansvarligenhet',
'Tilgangskode' : 'exemption',
'Fra' : 'sender',
'Til' : 'recipient',
'Til / Fra' : None, # Internal note, field empty
}
class NoDataEntries(LookupError):
pass
def cpu_spent():
usage = resource.getrusage(resource.RUSAGE_SELF)
return getattr(usage, 'ru_utime') + getattr(usage, 'ru_stime')
def cpu_available():
available = resource.getrlimit(resource.RLIMIT_CPU)[0]
# If no limit is set, assume 20 CPU seconds as the limit to avoid
# running for more than a few minutes every time.
if 0 > available:
available = 20
return available
def parse_day_html(parser, datastore, dayurl, html):
root = lxml.html.fromstring(html)
count = 0
for row in root.cssselect("div.document-rows"):
count = count + 1
data = {
'agency' : parser.agency,
'scrapedurl' : dayurl,
'scrapestamputc' : datetime.datetime.now()
}
head = row.cssselect("div.data-column div h3")[0].text_content().strip()
(arkivsaksref, docdesc) = head.split(" ", 1)
data['docdesc'] = docdesc
caseyear = 0
caseseqnr = 0
casedocseq = 0
caseid = 'unknown'
matchObj = re.match( r'(\d+)/(\d+)\s*-\s*(\d+)$', arkivsaksref, re.M|re.I)
if matchObj:
caseyear = int(matchObj.group(1))
data['caseseqnr'] = int(matchObj.group(2))
data['casedocseq'] = int(matchObj.group(3))
data['caseyear'] = caseyear
data['caseid'] = str(data['caseyear']) + "/" + str(data['caseseqnr'])
data['arkivsaksref'] = arkivsaksref
else:
print "error: really broken Arkivsaksnr: %s" % arkivsaksref
raise Exception("unable to parse url %s" % dayurl)
for tagclass in ['journal-recipients', 'journal-details']:
for d in row.cssselect("div.%s > dl" % tagclass):
field = d.cssselect("dt")[0].text_content().strip()
value = d.cssselect("dd")[0].text_content().strip()
if field in fieldmap:
if fieldmap[field] is not None: # Ignore duplicates
field = fieldmap[field]
else:
raise Exception("unknown field %s in %s" % (field, dayurl))
if value and '' != value:
data[field] = value
for field in ['docdate', 'recorddate']:
if field in data:
data[field] = dateutil.parser.parse(data[field],
dayfirst=True).date()
parser.verify_entry(data)
datastore.append(data)
# print data
return count
def fetch_day(parser, day):
datastore = []
daystr = day.strftime('%d.%m.%Y')
totalcount = 0
try:
offset = 0
offsetstep = 10
while True:
dayurl = "http://byr-journal.cloudapp.net/Journal/Search/?querytype=and&FromDate=%s&ToDate=%s&offset=%d" % (daystr, daystr, offset)
html = postlistelib.fetch_url_harder(dayurl).decode('utf-8')
# print html
count = parse_day_html(parser, datastore, dayurl, html)
totalcount = totalcount + count
# print count, dayurl
if 0 == count:
# print "Ending day at offset %d" % offset
break
offset = offset + offsetstep
scraperwiki.sqlite.save(unique_keys=['arkivsaksref'], data=datastore)
datastore = []
return totalcount
except scraperwiki.CPUTimeExceededError, e:
print "error: Ran out of time, abort scraping"
# Not saving, to avoid saving partial day. Better to scrape
# the entire day the next run.
return 0
except Exception, e:
# print html
print e
raise
aday = datetime.timedelta(1) # one day delta
newest = None
try:
newest = dateutil.parser.parse(scraperwiki.sqlite.select("max(recorddate) as max from swdata")[0]["max"], dayfirst=False).date()
oldest = dateutil.parser.parse(scraperwiki.sqlite.select("min(recorddate) as min from swdata")[0]["min"], dayfirst=False).date()
except scraperwiki.sqlite.SqliteError:
# Table not created yet, ignore the error
pass
if not newest:
# Bootstrap a month ago
newest = datetime.datetime.today() - aday * 30
oldest = newest
#print oldest, newest
skiplimit = 10
totalcount = 0
# Look forward one week to at least get past the weekends, rescan the
# last day in case new records showed up in the mean time. Next, scan
# backwards, one day before the oldest entry in the database.
for n in range(0, skiplimit, 1):
day = newest + aday * n
# print day
totalcount = totalcount + fetch_day(parser, day)
if cpu_spent() > (cpu_available() - 3):
print "Running short on CPU time, exiting"
sys.exit(0)
for n in range(-1, -skiplimit, -1):
day = oldest + aday * n
# print day
totalcount = totalcount + fetch_day(parser, day)
if cpu_spent() > (cpu_available() - 3):
print "Running short on CPU time, exiting"
sys.exit(0)
print "Fetched %d journal entries" % totalcount
# Need to rescan after a while to make sure we get the entries that
# take a while to show up when moving forward. Idea: Revisit all days
# where the record date is less than 30 days after the scraper date,
# allowing records to change for 30 days until we stop rescraping
# them. But wait 15 days before scraping again, to avoid scraping the
# same day over and over.
totalcount = 0
for drec in scraperwiki.sqlite.select("DISTINCT(recorddate) as d FROM swdata WHERE JULIANDAY(scrapestamputc) - JULIANDAY(recorddate) < 30 AND JULIANDAY('now') - JULIANDAY(scrapestamputc) > 15"):
day = dateutil.parser.parse(drec['d'], dayfirst=False).date()
print day
totalcount = totalcount + fetch_day(parser, day)
if cpu_spent() > (cpu_available() - 3):
print "Running short on CPU time, exiting"
sys.exit(0)
print "Rescanned %d journal entries" % totalcount
|